Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(3): 1906-1915, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36513374

RESUMO

Almost regular hexagonal arrays of microscopic pyramids consisting of soot nanoparticles are formed on the surface of graphitized hollow filaments, which are resistively heated to ∼1800-2400 °C under an Ar atmosphere containing trace amounts of oxygen (∼300 ppm). At higher temperatures (T > 2300 °C, approximately) the soot particles are represented mainly by multishell carbon nano-onions. The height and width of the pyramids are strongly dependent on the temperature of the resistive heating, diminishing from 5 to 10 µm at T ≈ 1800 °C to ∼1 µm at 2300-2400 °C. Quasi-hexagonal arrays of the micropyramids are organized in the convex "craters" on the surface of the microtubes, which grow with the time of the thermal treatment. The pyramids always point normally to the surface of the craters, except at the boundaries between the craters, where the normal direction is not well-defined. The pyramids are soft and can be easily destroyed by touching them but can be hardened by heating them under an oxygen-free atmosphere. The pyramids are observed only on the exterior surface of the microtubes, not on their inner surface. This suggests that the thermophoretic force generated by a strong temperature gradient near the external surface of the tubes may be the cause of the micropyramid formation. Electrostatic charging of the soot nanoparticles due to thermionic emission may also be relevant to this phenomenon. The micropyramids can function as field emission point sources, as demonstrated with the use of a micronanoprobing station, mounted in a scanning electron microscope.

2.
Materials (Basel) ; 15(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36556827

RESUMO

The porosity of differently wetted carbonaceous material with disordered mesoporosity was investigated using low-field 1H NMR relaxometry. Spin−spin relaxation (relaxation time T2) was measured using the CPMG pulse sequence. We present a non-linear optimization method for the conversion of relaxation curves to the distribution of relaxation times by using non-specialized software. Our procedure consists of searching for the number of components, relaxation times, and their amplitudes, related to different types of hydrogen nuclei in the sample wetted with different amounts of water (different water-to-carbon ratio). We found that a maximum of five components with different relaxation times was sufficient to describe the observed relaxation. The individual components were attributed to a tightly bounded surface water layer (T2 up to 2 ms), water in small pores especially supermicropores (2 < T2 < 7 ms), mesopores (7 < T2 < 20 ms), water in large cavities between particles (20−1500 ms), and bulk water surrounding the materials (T2 > 1500 ms). To recalculate the distribution of relaxation times to the pore size distribution, we calculated the surface relaxivity based on the results provided by additional characterization techniques, such as thermoporometry (TPM) and N2/−196 °C physisorption.

3.
Polymers (Basel) ; 10(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30966438

RESUMO

Mostly biosourced non-isocyanate polyurethanes (NIPU) were prepared from mono- and disaccharides, namely glucose and sucrose, reacted with dimethyl carbonate and hexamethylene diamine. The main aim of this research was to show that NIPU can be prepared from mono- and disaccharides, this just being an initial exploratory work and its sole main aim. The oligomers obtained were detected by MALDI-ToF, CP-MAS 13C NMR, and FTIR spectrometries. The glucose-derived NIPU were shown to harden at a markedly lower temperature than the sucrose-derived ones and to be easier to handle and spread. The NIPU obtained were applied as wood and steel surface coatings and tested by the sessile drop test (on wood) and cross-cut test (on steel) with encouraging results. The glucose NIPU gave good surface coating results already at 103 °C, while the sucrose NIPU yielded good results only at a markedly higher temperature of hardening. The NIPU saccharide resins were also tested as thermosetting wood joint adhesives with the glucose NIPU yielding very encouraging results.

4.
Polymers (Basel) ; 10(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30960758

RESUMO

The reaction of citric acid with wood veneers was studied by Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS 13C NMR) and matrix assisted laser desorption ionization time of flight (MALDI ToF) mass spectrometry. The analysis showed that reactions of citric acid occurred with both lignin and carbohydrate constituents of wood. The reactions occurring are esterifications between the carboxylic acid functions of citric acid and the numerous aromatic and aliphatic hydroxyl groups of the main wood constituents. Reaction of citric acid with glucose as a simple model compound of carbohydrates hydroxyl groups also yielded reactions leading to linear and branched oligomers by esterification. The result indicate that the reactions of esterification are accompanied in parallel by some internal rearrangements of lignin. The applied results on bonding wide flat wood surfaces such as veneers to obtain LVL panels yielded excellent strength results even if the conditions of pressing were more drastic than what is usual for this application. The applied bonding results have shown that citric acid has great potential to be used as a bio-binder for wood veneers.

5.
Polymers (Basel) ; 9(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30970715

RESUMO

Reaction of a condensed flavonoid tannin, namely mimosa tannin extract with a hexamethylene diamine, has been investigated. For that purpose, catechin was also used as a flavonoid model compound and treated in similar conditions. Solid-state cross-polarisation/magic-angle spinning (CP-MAS) carbon 13 nuclear magnetic resonance (13C NMR) and matrix assisted laser desorption ionisation time of flight (MALDI-ToF) mass spectroscopy studies revealed that polycondensation compounds leading to resins were obtained by the reaction of the amines with the phenolic hydroxy groups of the tannin. Simultaneously, a second reaction leading to the formation of ionic bonds between the two groups occurred. These new reactions have been shown to clearly lead to the reaction of several phenolic hydroxyl groups, and flavonoid unit oligomerisation, to form hardened resins.

6.
Polymers (Basel) ; 9(6)2017 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30970885

RESUMO

The reaction of condensation and cross-linking of desulfurized kraft lignin with triethyl phosphate (TEP) was explored. Catechol, a simple model of the aromatic ring of lignin, and glycerol, a model compound of the aliphatic hydroyl groups of the side chain of lignin, were employed under similar reaction conditions. Solid state cross-polarisation/magic-angle spinning (CP-MAS) 13C NMR and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) spectroscopy studies showed that polycondensation occurs on phenolic hydroxyl groups of lignin, as well as on aliphatic hydroxyls groups of its side chain. The reactions appear to be favoured by higher temperatures and in the presence of ammonia. Preliminary adhesion tests on wood shown good hydrophobicity properties of the surface treated with lignin-TEP-based resin. Initial application tests carried out at high temperature demonstrated as good performance as metallic coating.

7.
Sci Rep ; 6: 39617, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000781

RESUMO

The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required.

8.
ChemSusChem ; 9(8): 863-72, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-26990591

RESUMO

Complementary analytical methods have been used to study the effect of potassium on the pyrolysis mechanisms of cellulose and lignocellulosic biomasses. Thermogravimetry, calorimetry, high-temperature (1) H NMR spectroscopy (in situ and real-time analysis of the fluid phase formed during pyrolysis), and water extraction of quenched char followed by size-exclusion chromatography coupled with mass spectrometry have been combined. Potassium impregnated in cellulose suppresses the formation of anhydrosugars, reduces the formation of mobile protons, and gives rise to a mainly exothermic signal. The evolution of mobile protons formed from K-impregnated cellulose has a very similar pattern to the evolution of the mass loss rate. This methodology has been also applied to analyze miscanthus, demineralized miscanthus, miscanthus re-impregnated with potassium after demineralization, raw oak, and Douglas fir. Hydrogen mobility and transfer are of high importance in the mechanisms of biomass pyrolysis.


Assuntos
Biomassa , Potássio/química , Abies , Varredura Diferencial de Calorimetria , Celulose/química , Cromatografia em Gel , Temperatura Alta , Espectrometria de Massas , Poaceae , Espectroscopia de Prótons por Ressonância Magnética , Quercus , Termogravimetria
9.
Nanoscale ; 7(22): 10111-22, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981107

RESUMO

A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined (13)C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the (1)H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (∼50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic.

10.
Anal Chem ; 87(2): 843-7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25521946

RESUMO

Solid state NMR methods are required to analyze biomass as a function of its chemical or biological treatment for biofuels, chemicals, or biochar production. The native polymers network in lignocellulosic biomass and other solid materials, such as coal, coke, or biochar, can hardly be analyzed by liquid state NMR due to their poor swelling ability without chemical modification. A (1)H-(13)C two-dimensional heteronuclear correlation (HETCOR) experiment with frequency-switched Lee-Goldburg (FSLG) irradiation is performed on a high field spectrometer (750 MHz). This method leads to previously unattained resolution for biomass and biochar and offers a unique ability to reveal their chemical composition. The formation of aromatic moieties from carbohydrates and lignin thermal conversion is clearly distinguished. This method can be applied to all other carbonaceous materials.


Assuntos
Biomassa , Carvão Vegetal/química , Ressonância Magnética Nuclear Biomolecular/métodos , Polímeros/química
11.
Chemistry ; 17(7): 2199-210, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21294184

RESUMO

Time-series hydrothermal syntheses from two organic-cation-free gels with different compositions were employed to study the factors that control the final size of zeolite L crystals. The first gel had a starting K/Al ratio of 10, whereas in the second one it was three times lower. The relatively simple chemical composition of the starting gels and the combination of complementary characterization methods allowed us to track down the different stages of transformation of the initial amorphous gels into zeolite crystals and the factors that control the nucleation and growth processes. The role of the starting mixture components in the formation of the primary amorphous particles was explored. It was found that the profoundly different reaction kinetics in the two systems are caused by the difference in diffusion rates, which in turn are controlled by the extent of the polymerization reactions at room temperature during mixing of the starting components prior to hydrothermal treatment. As a consequence, nucleation is fast and ubiquitous in the first system with higher water content and K/Al ratio, whereas it is slow and sporadic in the second system with lower water content and K/Al ratio. Ultimately, these differences in the kinetics lead to the formation of two distinctly different patterns of crystal-size distribution, with a large number of small nanocrystals in the first sample and fewer large crystals in the second sample. The new findings put zeolite crystal growth on a rational basis that would enable the control of zeolite crystal size in similar organic-template-free systems.

12.
J Am Chem Soc ; 131(29): 10127-39, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19572709

RESUMO

All industrially available zeolites are obtained from hydrogel systems. Unfortunately the level of understanding of the events preceding zeolite crystallization is far from satisfactory. In this respect, revealing the nature of the processes taking place in the precursor gel is of paramount importance to understanding zeolite nucleation. The investigation of the gel structure, however, is a difficult task due to the complexity of the object in terms of both composition and topology. Therefore, a combination of hyperpolarized (HP) (129)Xe NMR-N(2) adsorption-high-resolution transmission electron microscopy-energy-dispersive spectrometry methods complemented by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and chemical analyses has been employed to study the changes in composition and structure of sodium hydroxide rich aluminosilicate gel yielding zeolite A. The role of each component in the system and the entire sequence of events during the induction, nucleation, and crystallization stages have been revealed. The high concentration of sodium hydroxide in the studied system has been found to control the size and structure of the gel particles in the beginning stage. During the initial polymerization of aluminosilicate species a significant part of the sodium hydroxide is expelled from the gel into the solution, which restricts extensive polymerization and leads to formation of small aluminosilicate particles with open pore structure. The induction period that follows is marked by incorporation of Na back in the bulk gel. The combined action of the Na ion as a structure-directing agent and the hydroxyl group as a mobilizer results in partial depolymerization of the gel and formation of voids with mesopore sizes. The nucleation maximum coincides temporally with development of pores with sizes in the range of 2-5 nm. The amorphous gel undergoes into crystalline zeolite only after these pores have disappeared and the chemistry of the gel has evolved to reach the stoichiometric zeolite composition. It was established unambiguously by high-resolution transmission electron microscopy and HP (129)Xe NMR that the nucleation of zeolite occurs in the solid part of the system and the succeeding crystallization commences only after the nuclei are released into the liquid, which is consistent with the autocatalytic mechanism. Also this investigation has demonstrated the unrivaled sensitivity of HP (129)Xe NMR that is capable of identifying presence of small amounts of crystalline zeolite material in amorphous medium with detection limit extending below 1 wt %.


Assuntos
Silicatos de Alumínio/química , Sódio/química , Zeolitas/química , Adsorção , Físico-Química , Géis/química , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Fatores de Tempo , Difração de Raios X
13.
Bioresour Technol ; 100(20): 4711-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19473836

RESUMO

As biomass feedstock, wood and lactic acid biopolymers have been used as constituents of an innovative biocomposite material possessing remarkable properties. Three different systems were made by soaking lactic acid oligomers into solid wood and then oven heating to induce in situ polymerisation, confirmed by Fourier transformed infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) analysis. Combinations of treatment systems and heating durations, implying structural wood modification, led to different physical behaviours of the composites. The first obtained material was in the form of softened and easily bendable wood. Subjected to an extended heating period, this softened material could then regain its initial hardness. Another treatment parameter combination directly led to densified wood with improved properties. These two main composite materials are expected to be useable for bending, stamping or flooring industrial uses, depending on their physical condition.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Ácido Láctico/metabolismo , Madeira/metabolismo , Biopolímeros/química , Calibragem , Catálise , Cromatografia em Gel , Módulo de Elasticidade , Teste de Materiais , Peso Molecular , Polietilenoglicóis/química
14.
ChemSusChem ; 2(3): 255-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19266515

RESUMO

Long live lubricants: The selective capture of water from lubricants using nanosized microporous aluminophosphate (AEI) and aluminosilicate materials was studied. Nearly 98 % of the moisture was removed from the lubricating oil under ambient conditions, resulting in a significant improvement in the lubricating service lifetime. Moreover, both the lubricant and the microporous sorbents can be recovered and reused.The selective capture of water from lubricants using nanosized microporous aluminophosphate and aluminosilicate materials was studied with an aim to increase the lifetime of the lubricating mineral oil. The amount of water present in oxidized lubricating oil before and after treatment with microporous materials was studied by FTIR spectroscopy and determined quantitatively using the Karl Fischer titration method. Nanosized aluminophosphate revealed a high selectivity for water without adsorbing other additives, in contrast to nanosized aluminosilicates which also adsorb polar oxidation products and ionic additives. About 98 % of the initial moisture could be removed from the lubricating oil under ambient conditions, resulting in a significant improvement in the lubricating service lifetime. Moreover, no by-products are formed during the process and both the lubricant and the sorbents can be recovered and reused, thus the method is environmentally friendly.


Assuntos
Lubrificantes/química , Água/química , Adsorção , Microscopia Eletrônica de Varredura , Óleo Mineral/química , Nanoestruturas/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...